

Targeted Next Generation Sequencing as a first line strategy for PID/IEI diagnosis : the biologist's experience

Mathieu Fusaro

Former clinical biologist at « Centre d'étude des déficits immunitaires » (CEDI) Necker Enfants Malades Hospital (Pr Capucine Picard) PhD Student at INFINITY (Toulouse) 07/04/2022

07/04/2022

From Sanger to NGS panel for index cases

Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee

Tangye et al. J Clin Immunol. 2020 Jan;40(1):24-64

>450 Inborn Errors of Immunity ! Clinical heterogeneity

Sanger sequencing

Hypothesis-based diagnosis Cumbersome and expensive for multiple gene testing No detection of heterozygous CNV

Custom NGS panel was designed in 2015

Capture of exonic regions in 300 genes for which mutations can cause an Inborn Error of Immunity (IEI)

Timeline of genetic strategies in IEI

Technical overview

Illumina sequencing (Necker Genetic platform)

Coverage analysis to diagnose Copy Number Variation

Double normalization of read count (RC) to account for coverage variability between genomic regions and between patients

Dup/del score =
$$\frac{(RC^{probe}/RC^{all})_{patient}}{(RC^{probe}/RC^{all})_{mean}} \simeq 1$$

RC : read count = coverage

Score < 0,7 => deletion ?

Some statistics on the first 129 PID cohort (2016-2018)

300 genes 4136 regions of interest 1.095 Mbp = 0.034% genome = 3.65% exome

129 patients included in the validation cohort

Mean coverage 539X >30X : 98.91%

Yield & Transmission

Type of variations

CNV : 13% of the variants => increase yield by 4,6%

Evolution of the diagnostic strategy

1158 patients studied by tNGS from 2015 to 2020

Integration of NGS panels in the diagnostic workflow

Adapted from Lee et al, Human Immunology 2021

What is the efficiency for adult patients ?

Overview of the litterature (n=30 publications)

Quick focus on 2 complex cases resolved by tNGS :

1. A copy number variation in a non-coding region leading to haploinsufficiency

2. A patient partially cured before getting sick

A copy number variation in a non-coding region leading to haploinsuffisiency

True deletion of non-coding exon 1 of NFKB1 or false positive?

Patient from A. Maria (Montpellier)

48-years-old man Since childhood :

- Sino-pulmonary infections
- Hypogammaglobulinemia (supplemented)

CVID complications : chronic diarrhea with colitis, ITP, NRH with portal hypentension DLBCL EBV+ in 2019

Dup/del score for NFKB1

Exon 1NC

С	0.97	1	0.98	0.62	1.07	1.04	0.97
	1.05	0.93	1.02	0.97	1.03	1.02	0.94
	1.05	0.96	1.06	0.97	1.05	1.03	0.93
	1.05	0.96	1.04	0.94	1.02	0.98	0.93
	1.02	0.9	0.99	1	1.03	1.03	1.02
	1.02	1.06	1.01	0.94	1.03	0.97	0.95
	1.03	1	1.01	1.05	1	1.01	0.96
	0.97	1.02	0.98	0.99	1.04	0.98	1
	1.02	1.05	0.97	0.96	1.05	0.99	1.01

misaligned reads

Zoom on coverage drop

Confirmation of the 2,7kb deletion

Breakpoint PCR and sequencing :

The deletion encompasses promoter and enhancers of NFKB1

Genetic and functional confirmation

PCR by Marion Heller & qPCR by Laura Barnabei

A patient partially cured before getting sick

Patient from M. Malphettes :

45-years-old man

Clinical presentation :

Sino-pulmonary infections since 5y Moderate/severe psoriasis since 16y Bilateral bronchiestasie at 37y

Biological explorations :

IgGAM : normal Chronic EBV viremia : low to moderate Post-vaccinal serology :

- Tetanos : normal
- Pneumococcus : negative

From Bogaert DJA, et al. J Med Genet 2016

Genetic Diagnosis Using Whole Exome Sequencing in Common Variable Immunodeficiency

Patrick Maffucci^{1,2†}, Charles A. Filion^{2†}, Bertrand Boisson^{3,4,5}, Yuval Itan³, Lei Shang³, Jean-Laurent Casanova^{3,4,5,8,7} and Charlotte Cunningham-Rundles^{1,2}*

Patients with CVID diagnosis + one of the following criteria :

- Early beginning (<10 yo)
- autoimmunes/inflammatory manifestations
- B cell lymphopenia
- Familial hypogammaglobulinemia
 DIAGNOSTIC YIELD = 30%

Two deleterious genetic events in DOCK8

Familial segregation

Dup_ex15-26/p.R1763*

Compound heterozygous

DOCK8 expression by flow cytometry

Somatic reversion ?

Whole gene analysis by Christine Bole & Cécile Masson

Clinical improvement in 3 DOCK8 revertant patients

The Journal of Clinical Investigation

RESEARCH ARTICLE

Somatic reversion of pathogenic *DOCK8* variants alters lymphocyte differentiation and function to effectively cure DOCK8 deficiency

Bethany A. Pillay,^{1,2} Mathieu Fusaro,^{3,4,5} Paul E. Gray,^{6,7,8} Aaron L. Statham,¹ Leslie Burnett,^{1,2,8} Liliana Bezrodnik,⁹ Alisa Kane,^{1,2,8,10,11,12} Winnie Tong,^{8,11} Chrystelle Abdo,¹³ Sarah Winter,^{3,5,14} Samuel Chevalier,⁴ Romain Levy,^{3,14,15} Cécile Masson,^{3,16} Yohann Schmitt,^{3,17,18} Christine Bole,¹⁷ Marion Malphettes,¹⁹ Elizabeth Macintyre,¹³ Jean-Pierre De Villartay,²⁰ John B. Ziegler,^{6,7,8} Joanne M. Smart,²¹ Jane Peake,²² Asghar Aghamohammadi,²³ Lennart Hammarström,²⁴ Hassan Abolhassani,^{23,24} Capucine Picard,^{3,4,5,14} Alain Fischer,^{3,14,25,26} Sylvain Latour,⁵ Benedicte Neven,^{14,27} Stuart G. Tangye,^{12,8} and Cindy S. Ma^{1,2,8}

Bethany Pillay & Stuart Tangye

CEDI's team

Aknowledgments

CEDI team (including formers members)

- Capucine Picard
- Jacinta Bustamante
- Geneviève de Saint Basile
- Jérémie Rosain
- Nathalie Lambert
- Virginie Grandin
- Marion Heller
- Samuel Chevalier
- Méghane Letouze
- Gislène Collobert
- Corinne Jacques
- Laurianne Chartier
- Coralie Pillot
- David Jean
- Nathalie Dufoix
- Catherine Heitz
- Catherine Tournaux
- Amélie Dumesges
- Camille Rouzaud
- Steve Genebrier
- Clémentine Moulin
- Gautier Petit

INSTITUT DES MALADIES GÉNÉTIQUES

Genetic and bioinformatic platforms of Necker & Imagine

- Vincent Morinières
- Sylvain Hanein
- Cécile Fourrages
- Cécile Masson
- Patrick Nitschke

For useful discussion about functionnal validation

- Frédéric Rieux-Laucat
- Anne Puel
- Sylvain Latour
- Jean-Pierre de Villartay
- Patrick Revy
- Caroline Kanengiesser
- Fabienne Charbit-Henrion
- Nathalie Cerf-Bensussan
- Sven Kracker
- Isabelle André

Clinicians

All the clinicians who participed by taking care of the patients, and especially all the UIHR team for constructive discussions and great team work !

Mathieu Fusaro, PharmD, MSca,b,c Jérémie Rosain, PharmD, MSca,b,d Virginie Grandin, MSc^b Nathalie Lambert, MSc^b Sylvain Hanein, PhD^e Cécile Fourrage, PhD^{e,f,g} Nicholas Renaud, MSc^e Marine Gil. MSc⁴ Samuel Chevalier, AS^b Wadih Abou Chahla, MD^h Brigitte Bader-Meunier, MDⁱ Vincent Barlogis, MD, PhD^{i,k} Stéphane Blanche, MDⁱ David Boutboul, MD, PhD¹ Martin Castelle, MDⁱ Thibault Comont. MD^m Jean-Sébastien Diana, MD Claire Fieschi, MD, PhD^{k,l} Lionel Galicier, MD Olivier Hermine, MD, PhD^{a,k,n} Alain Lefèvre-Utile, MD^{i,o} Marion Malphettes, MD Etienne Merlin, MD, PhD^p Eric Oksenhendler, MD, PhD^{k,l,q} Marlène Pasquet, MD, PhD' Felipe Suarez, MD, PhD^{a,k,o} Isabelle André, PhD^{e,s} Vivien Béziat, PhD^{d,e} Geneviève De Saint Basile, MD, PhD^{a,b,t} Jean-Pierre De Villartay, PhD^{e,u} Sven Kracker, PhD^{e.s} Chantal Lagresle-Peyrou, PhD^{e,s} Sylvain Latour, PhD^{c,e} Frédéric Rieux-Laucat, PhD^{e,v} Nizar Mahlaoui, MD, PhD^{i,k} Christine Bole, PhD^e Patrick Nitschke, PhD^{e,j} Elisabeth Hulier-Ammar. PhDe Alain Fischer, MD, PhD^{a,i,k,w} Despina Moshous, MD, PhD^{a,i,u} Bénédicte Neven, MD, PhD^{a,i,v} Alexandre Alcais, MD, PhD^{d,e} Guillaume Vogt, PhD^{x,y,z} Jacinta Bustamante, MD, PhD^{a,b,d} Capucine Picard, MD, PhD^{a,b,c,i,k}